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Modeling Optimization Problems: Case Study

Goal of our case study

@ Work through concrete optimization example
e Show interplay between variables & constraints
e Build model from physics to math

.. or from words to equations

e Real physical design problem

o Highlight some modeling tricks

... preview of mixed-integer optimization part

@ Continue our exploration of AMPL

@ Show how good modeling improves solvability

Original model by Abramson (2004) modified by Abhishek et al.

(2008)

25



Design of Load-Bearing Thermal Insulation System
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Description of System

Insulation system uses series of heat intercepts
to reduce heat from hot (top) to cold (bottom) surface
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Design of Load-Bearing Thermal Insulation System
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e Similar to system used in Large Hadron Collider (LHC)
@ Must be good insulator and support weight

@ Uses insulation properties and cooling between layers
(intercepts)

@ Choose thickness of layers, and material type of layer

@ Also optimize number of layers
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Design of Load-Bearing Thermal Insulation System
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Design Goal or Objective
Minimize cooling power needed to run system J

@ Active cooling at intercepts between layers = cooling power
@ Given hot surface temperature, maintain cold surface
temperature below allowable maximum

1D layers = no heat equation: u; — Au = g ... effects small
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Modeling Optimization Problems: Case Study

e First Model of Thermal Insulation

Building an AMPL Model
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Discrete Design Variables Overview

Discrete design variables over which we optimize
@ Number of intercepts, n € {1,2,..., N = 10} discrete

@ m; material m; € M of insulator i =1,...,n+1
where m; € M = { nylon, teflon, epoxy-normal, epoxy-plane,
aluminium, steel, carbon-steel } ... discrete choice
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Continuous Design Variables Overview

Continuous variables over which we optimize

@ x; length of insulator i =1,...,n+1

@ a; area of insulator i =1,...,n+1

@ g; heat flow from intercept itoi—1,fori=1,...,n+1
@ t; cooling temperature at intercept i =0,...,n+1

@ Ax; thermal expansion of layer i=1,...,n+1

can be eliminated later
where layers 0 and n+ 1 are cold and hot surface, respectively
e Cold surface temperature is tg = T¢ = 4.3K (near abs. zero)
@ Hot surface temperature is t, = Ty = 300K (27C)
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Objective Function

Minimize cooling power (discontinuous ... reformulate later)

minimize Z C(t) < - 1) (qi+1 — qi)

I

where

e C(t;) thermodynamic cycle efficiency of intercept i

5 ift; <4.2,
C(t)=14 ifd42<t;j<7l, i=1,...,n
2.5 if t; > 71.

@ t; is cooling temperature at intercept /
@ g; is heat flow from intercept i

@ Ty=27C is ambient temperature = % >1
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Simple Linear Constraints

n
° Zx,- = L insulator thickness add up to L, length

i=1

ti_1 <t <tiy1, i=1,...,n ordered cooling temperatures
to=Tc =4.3K & tp41 = Ty = 300K fixed cold & hot temps
1 < n < N integer number of layers
x;>0,&a;>0,i=1,...,n+ 1 nonnegative thickness &

area

7

D

tny1 =Th

ti1

11/25



Modeling Heat Transfer g;

Given t;_1, t;, heat transfer from Fourier's law

a; L
q=— k(t, m;)dt
Xi Sty

where a; area, x; thickness of intercept /

x10° Plot of Thermal Conductivity vs. Temperature

Model of thermal conductivity

e k(t, m;) thermal conductivity of

insulator m; at temperature t :
@ k(t, m;) given as tabulated data T
@ interpolate using cubic splines il

@ integration with Simpson'’s rule
= consistent with cubic splines T T




Modeling the Mass Constraint

Constraint on total mass of system:

where

zn: p(m,-)a;x,- < M

i=1

@ a; area, x; thickness of intercept i

e p(m;) is density of material m;
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Stress Limit Constraint

Stress of insulator i must not exceed load F

where

x10° Plot of Thermal Expansion vs. Temperature

—— Teflon
—— Nylon
—— Epoxy-Normal
— Epoxy-Plane

e o(t, m;) tensile yield strength of
insulator m; at temp. t

e o(t, m;) given as tabulated data -
@ interpolated using cubic splines T

@ write as semi-infinite constraint

F
& — < O'(t, mi) Vit: i1 <t<t 5 % W m @
aj
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Teaching Point: Modeling Discrete Decisions

Materials { nylon, teflon, epoxy-normal, epoxy-plane, aluminium,
steel, carbon-steel } are not linearly ordered

= cannot assign numbers 1,...7

Y10° Plot of Themnal Conductivity vs. Temperature Y10° Plot of Tharmal Expansion vs. Temperature

o 50 100 50 200 250 200 o 50 100 50 200 250 200

Thermal Conductivity Yield Strength
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Modeling Thermal expansion of layers

Layers cannot expand more than § %:
“ AX,' Xj 0
- - ) < = ixi < L_
;( x > (D)=m * Z“X 100

where u; relative expansion, replaces Ax;.

Physical model of thermal expansion

Ax; f;’_l e(t, mj)k(t, mj)dt
=y = i=1,...,n

X; ft’ X k(t, m;)dt

ti_

from thermal conductivity, k(t, m;), and yield strength, e(t, m;)

Why did we introduce u;?
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Teaching Point: Spread the Nonlinearities

Why did we introduce u;? Consider new variables, r, v, w
(f) (K) <D and <£> _ f(r,v,w)
v/ \L v g(ryv,w)
where f(r,v,w), g(r, v, w) nonlinear functions, L, D constants

Clearly, can simplify 15¢ constraint to r < LD
@ Makes 1%t constraint linear

o Keeps L in 2" constraint

. . _r m . . 1]
By introducing u = {, we “spread the nonlinearity

f(r,v,w
uv<LD and u= M
g(r,v,w)
Best formulation depends on model ... no general rules!
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Complete Mixed Variable Model

minimize Z Gi(t) (T — 1> -(gi+1 — qi) cooling power
1

. aj
subject to q; = —'/ k(t, m;)dt heat transfer
X, ti_1

Zp(m,-)a;x,- <M total mass
i=1
F <ajo(t,m;))Vt: ti_1 <t <t stress limit
n
Z uix; < Li thermal expansion
— — 100

Plus linear constraints: tj_1 < t; < tj;1, x; >0, a;>0

ZX":Lv to=Tc, thy1=Tw, ne{l,....,N}, meM
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Modeling Optimization Problems: Case Study

First Model of Thermal Insulation

© Building an AMPL Model
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Exam: Code this Model in AMPL

Great model, let's see what the AMPL code looks like ...
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Exam: Code this Model in AMPL
Great model, let's see what the AMPL code looks like ...
Are you kidding me??? This won't work in AMPL!!!
@ How do | encode the material choice, which is non-integer?

m; e M= {nylon, teflon, epoxy-normal, ... steel, carbon—steel}

@ How can | have variables as limits in summations?

Y xi=L ne{l,...,N=10}
i=1

Would be written in AMPL as
param N := 10;
param L := 10;
var n, integer, >=1, <=N;
var x{1..n} >= 0;
subject to

Length: sum{i in 1..n} x[i] = L;

Creates at least two ERRORs ... where?

. max. number of layers
. system length [cm]

. number of layers

. length of layer

H H HH
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Exam: Code this Model in AMPL

How can | have variables as limits in summations?

n
d xi=L ne{l,...,N=10}
i=1

Would be written in AMPL as

param N := 10;
param L := 10;
var n, integer, >=1, <=N;
var x{1..n} >= 0;
subject to
Length: sum{i in 1..n} x[i] = L;

. max. number of layers
. system length [cm]

. number of layers

. length of layer

H H H

Creates at least two ERRORs ... where?
@ Variable n cannot be set limiter
var x{1..n} >= 0; # ... length of layer
@ Variable n cannot be summation limiter
Length: sum{i in 1..n} x[i] = L;
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Other Issues with Qur Model

@ Even if AMPL allowed variable n as summation limit
... problem is discontinuous ... sum only defined for integers

@ Objective function (cooling power) is discontinuous

minimizeznz Gi(t) (% — 1) (giv1 — i)

i=1 !

because
5 if t; <4.2,
C(t)=<¢4 ifd42<t;<7l, i=1...,n
25 ift; > 71.

. most AMPL solvers require smooth functions
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Other Issues with Qur Model

Evaluation of heat transfer integrals requires quadrature

ti

ai k(t, m;)dt

qi =
Xi Jt_q

@ Can in principle “code” quadrature rules in AMPL
@ Resulting would be highly nonlinear,
because integrals depend on variable t;

@ AMPL is an interpretive not compiled language
= quadrature rules would make function evaluation inefficient
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Towards an AMPL Model

How do we solve this pesky problem?

@ Code functions in Fortran or C/C++
= efficient function evaluations

@ No derivatives, consider derivative-free solvers,
e.g. pattern-search, simulated annealing, or evolutionary
algorithms

Snag: Solver looses model insight ... black-box optimization

Can we still use AMPL to solve this model?
@ Requires some modeling tricks
@ Resulting model is a smooth mixed-integer nonlinear program

o Efficient ... optimum 10% better than derivative-free solvers
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Conclusion and Outlook

Introduced a challenging case study
@ Design of thermal insulation layer for LHC

Goal is to minimize cooling energy
Constraints on thermal insulation, mass, stress limits
Discrete design choices: number of layers, material

]
]
(]
e Continuous design parameters: thickness, area, temperature

@ Translated physical description into mathematical model

@ Numerically challenging problem ... no obvious AMPL model

@ Integer modeling tricks (next week) make it tractable

Return to model later, when we learn about integer variables
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